

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2017
Lab 05 – Lists

Assignment: Lab 05 – Lists
Due Date: During discussion, February 27th through March 2nd
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will put into practice the concepts you learned about lists:
indexing, mutating, and traversing. It will also make use of while loops, both

to get input from the user, and to traverse the contents of the list.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Sentinel While Loops

One way to use a while loop is as a sentinel loop. A sentinel loop continues

to process data until reaching a special value that signals the end of the data.
The special value is called the sentinel.

Here is the pseudocode for a sentinel loop in Python:

Get the first data item from the user

While data item is not the sentinel

 Process the data item

 Get the next data item from the user

One of the scenarios in which we can implement this type of loop is a version
of our grocery list program that allows us to enter as many items as we like.
Although it is similar to previous versions, the interactive (sentinel) while loop
of the grocery list program allows us to enter as many items as we like until the
sentinel value of "exit" is entered.

def main():

 grocery_list = [] # initialize the list to be empty
 # get the initial user value

 userVal = input("Enter an item, or 'exit' to end: ")

 # run the while loop until the user enters "exit"

 while userVal != "exit":

 grocery_list.append(userVal)

 # get another value from the user

 userVal = input("Enter an item, or 'exit' to end: ")

 print("Remember to buy", grocery_list)

main()

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Lists and Indexing

Lists are an easy way to hold lots of individual pieces of data without needing
to make lots of variables. They are a type of data structure, which are
specialized ways of organizing and storing data.

In order to get a specific variable, or element, from a list, we need to access
that index of the list. NOTE: Lists don’t starting counting from 1 – the first
element in the list is at index 0.

For example, the following line of code creates a list called names:

names = ["Aya", "Brad", "Carlos", "David", "Emma"]

Which creates the list (called names) below:

Aya Brad Carlos David Emma

0 1 2 3 4

Part 1C: Review – Traversing Lists

Looking at the contents of a list is also known as traversing the list, and can
be done using a basic while loop. In the loop, we use a variable to keep

track of which item in the list we are looking at by having it store the index of
that item. As we move on to the next item, that variable is incremented, until
we reach the end of the list.

For example, this code would traverse the names list above, printing out that

each person is awesome:

this variable can be called anything

it starts at zero because that's the first index

index = 0

while index < len(names):

 print(names[index], "is awesome!")

 index += 1

CMSC 201 – Computer Science I for Majors Page 4

Part 1D: Review – Mutating Lists

Lists can also be "mutated" – we can add and remove items from them as
many times as we want. This means that we can start off with an empty list
(denoted as two square brackets: newList = []) and fill it as necessary.

Adding to a list is easy to do: simply add the new item to the end of the list,
using the .append() function. The following line of code adds a few items

to a list called newList:
newList.append("A Thing")

newList.append(1.37)

newList.append(0)

newList.append(False)

After we run these lines of code, our list would look like this:

"A Thing" 1.37 0 False

0 1 2 3

To remove items from the list, we use the appropriately named .remove()

function. The .remove() function takes in what we want to remove, not

where it is in the list. For example, if we call it and ask it to remove 0, it will
remove the third element, the integer 0, and not the string "A Thing", which is
stored at index 0.

newList.remove(0)

"A Thing" 1.37 False

0 1 2

The .remove() function also updates the indexes of anything after the

removed element, so that our list looks like a regular list after the element was
deleted. (In other words, notice how the index at which False is stored

changes from 3 before the removal to 2 afterwards.)

CMSC 201 – Computer Science I for Majors Page 5

Part 2: Exercise

In this lab, you’ll be creating one file, music.py, but you’ll be creating it in

four steps. That way, you can focus on each of the steps needed one by one.

The program you’ll be coding will display different options for musical genre,
and will allow users to vote on which one they prefer, using the numbers
printed next to each one. Once voting is over, your program will print out each
musical genre and how many votes is earned.

Tasks

 Create a music.py file

 Write the code to print out the music choices
 Write the code to get votes from the user
 Write the code to “save” the votes in a list
 Write the code to print out the total votes

 (You should run and test your music.py file after each step)

 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 6

Part 3A: Creating Your File

First, create the lab5 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well. (If you need a reminder of how to

create and navigate folders, try asking a classmate next to you for help. If
you’re both stuck, ask the TA or refer to the instructions for Lab 1.)

Next, create a Python file called music.py using the “touch” command in

GL.
The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch music.py

 emacs music.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: 2/TODAY/2017

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 7

Part 3B: Printing the Music Choices

This is the first of four steps that must be written for this lab.
The first step is to copy in the list of musical genres, and to write code that will
print out the different choices.

Copy the list below into your program’s main():
types of music to vote on

music = ["Classical", "Country", "Jazz", "Pop", "Rock",

"R&B", "Rap"]

To print the choices, you should write a while loop that will print out the

following two things on each line:

 The number of the choice (with the count starting at 1, not 0!)

 The musical genre’s name

Here is some sample output for this part of the program.
(Yours should match this word for word.)

bash-4.1$ python music.py

1 - Classical

2 - Country

3 - Jazz

4 - Pop

5 - Rock

6 - R&B

7 - Rap

Once this part of the program works correctly, move on to the next step.

Having trouble making the numbering start at 1 instead of 0?
Remember that the index of a list begins counting at 0. If you are printing the
current index as the number, your printing will start at 0. In order to start
counting at 1, you will need to print something like index + 1.

CMSC 201 – Computer Science I for Majors Page 8

Part 3C: Voting for a Musical Genre

This is the second of four steps that must be written for this lab.
Now that the musical genres can be displayed, we need to allow the user and
their friends to actually vote!

For now, we won’t worry about storing the votes. Just write the code that will
allow the user to vote, and will stop when they enter a “0” to quit. If they make
an invalid choice, simply ignore it and ask again.

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python music.py

1 - Classical

2 - Country

3 - Jazz

4 - Pop

5 - Rock

6 - R&B

7 - Rap

What type of music would you like? (Enter 0 to stop): 1

What type of music would you like? (Enter 0 to stop): 1

What type of music would you like? (Enter 0 to stop): 4

What type of music would you like? (Enter 0 to stop): 4

What type of music would you like? (Enter 0 to stop): 9

What type of music would you like? (Enter 0 to stop): 7

What type of music would you like? (Enter 0 to stop): 0

Once this part of the program works correctly, move on to the next step.

Are you stuck on how to interact with the user?
Take a look at the example on page 2 of a sentinel loop (an interactive while

loop). You should use the same basic code setup to allow the user to keep
voting until they choose to quit by entering “0”.

CMSC 201 – Computer Science I for Majors Page 9

Part 3D: Storing Votes

This is the third of four steps that must be written for this lab.
Now that you can accept votes, we need to store them. We’ll store the votes
for the music choices in another, separate list of integers.

The list of votes should correspond directly to the list of music choices: the
votes at a given index should be for the music choices stored at that same
index in the music list.

So if, for example, the user voted for Classical (choice 1), Rap twice (choice 7)
and Jazz four times (choice 3), the vote list would look like this:

votes = 1 0 4 0 0 0 2

index 0 index 1 index 2 index 3 index 4 index 5 index 6

Remember, list indexing starts at 0, but we’re presenting the choices to the
user starting at 1, so the way you store votes will need to compensate for this
offset. You’ll also need to make sure you handle invalid input correctly – don’t
try to count a vote for option #8, when there are only 7 choices!

At the end, print out the list of votes, so you can ensure your program is
working correctly. (Simply use print("votes:", votes) in your code.)

Here is some sample output, with the user input in blue.
We’ve removed the list of genres at the beginning to save space,
but it should still be present in your output.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python music.py

[[musical genres should be displayed here]]

What type of music would you like? (Enter 0 to stop): 3

What type of music would you like? (Enter 0 to stop): 3

What type of music would you like? (Enter 0 to stop): 4

What type of music would you like? (Enter 0 to stop): 6

What type of music would you like? (Enter 0 to stop): 0

votes: [0, 0, 2, 1, 0, 1, 0]

(If you need some help, hints are available after this sample output.)

CMSC 201 – Computer Science I for Majors Page 10

Once this part of the program works correctly, move on to the next step.

Stuck on how to store the user’s votes?
You need a list of the same length as the number of music choices. It should
be a list of integers, and since this is something we’re using to count, they
should all be initialized to zero.

Still stuck on how to store the user’s votes?
Try creating a votes variable that contains exactly as many zeroes as the
number of music choices. Something like this would work:

votes = [0] * len(music)

Is your program counting the user’s vote for the wrong music choice?
Remember, the user’s numbering starts at 1, but the indexing in a list starts at
0. If a user chooses to vote for music choice #3, the votes for that music
choice are stored at votes[2], not votes[3].

Having trouble seeing the “big picture” of how your program should work?
Try drawing a quick flowchart or planning out what needs to happen on paper
in pseudocode. Don’t worry about the specific details, just try to visualize what
needs to happen overall. How do you stop once the user wants to quit? When
do you need to ignore a user’s vote? How are the votes stored? When do
variables need to be initialized?

CMSC 201 – Computer Science I for Majors Page 11

Part 3E: Printing Out the Results

This is the last of four steps that must be written for this lab.
This last step is relatively simple, as you’ve already done all of the hard work.
For this step, we’ll display the final votes for each music choice. (If your code
that asks for and stores votes doesn’t work correctly, you might also have to do
some debugging. That’s how programming works, sometimes!)

Once the user has entered “0” in order to stop voting, you need to go through
the list and print out the number of votes each music choice earned. You will
need to iterate through both of the lists in order to print out the music choice
and the number of votes it received.

Also, remove the line of code that prints out the list of votes from the last step!

IMPORTANT NOTE: You do not need to worry about figuring out which music
choice won. Although this would be great practice to try out!
(If you need some help, hints are available after this sample output.)

Here is some sample output, with the user input in blue.
We’ve removed the list of genres at the beginning to save space.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python music.py

[[musical genres should be displayed here]]

What type of music would you like? (Enter 0 to stop): 3

What type of music would you like? (Enter 0 to stop): 3

What type of music would you like? (Enter 0 to stop): 4

What type of music would you like? (Enter 0 to stop): 6

What type of music would you like? (Enter 0 to stop): 0

Classical has 0 votes.

Country has 0 votes.

Jazz has 2 votes.

Pop has 1 votes.

Rock has 0 votes.

R&B has 1 votes.

Rap has 0 votes.

(If you need some help, hints are available after this sample output.)

CMSC 201 – Computer Science I for Majors Page 12

Are you stuck on how to print elements from two lists at the same time?
Because we want to print two lists at once, we must use the same while loop to
access their contents. Remember that both lists are the same length, and the
indexes of music choice and votes match between the two lists.

Still stuck on how to print two lists at once?
You will want to use a loop similar to the one at the bottom of page 3. (The two
lists in your program should be the same length, so it doesn’t matter which one
you use for the length.)

CMSC 201 – Computer Science I for Majors Page 13

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

 Create a music.py file

 Write the code to print out the music choices
 Write the code to get votes from the user
 Write the code to “save” the votes in a list
 Write the code to print out the total votes

 (You should run and test your music.py file after each step)

 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

